

DSR-PAV TF Update ETG Meeting

May 2018

Pavel Kriz (Imperial Oil/ExxonMobil) Gerry Reinke (Mathy) Mike Anderson (Asphalt Institute) Wes Cooper (Asphalt Institute) David Anderson (Consultant)

Reconnect from September 2017

- 1. Stage 1 Completed \rightarrow DSR equilibrium time
 - Time to equilibrium is not controlled among different DSRs the same, however its impact on data variability is not dominant
- Stage 2 Completed → effect of strain magnitude & plate size on variability
 - Modified test setup did not result in desired improvement in test variability – precision improved, however accuracy worsen
 - Current DSR-PAV test is not discriminatory to varying binder qualities, yet it is a limiting specification
 - Phase angle showed as very reliable parameter any lab can measure, and which can discriminate asphalts and temperature changes
 - Data fully support current efforts on finding an alternate property (NCHRP 09-59 and 09-60)

|G*| is a very <u>unreliable</u> measurement ______

Phase Angle is a <u>very</u> reliable measurement

Individual Value Plot of delta T High

Panel variables: Strain, Geometry

Complex, Storage & Loss Moduli

Representation in Complex Plane

 $(\sigma \text{ out of phase } \gamma)$ viscous

elastic

$$|\boldsymbol{G}^*| = \sqrt{G'^2 + G''^2} = \frac{\sigma_0}{\gamma_0}$$

 $\tan \delta = G''/G'$

 $G^* = G' + iG''$

syn	nbol	modulus	energy	response
6	-/ /	storage	stored	elastic
G	"	loss	dissipated	viscous

ExonMobil

Science Behind DSR-PAV

DSR-PAV can not capture fundamental differences

- Two asphalts (PG 64 & PG 46) were oxidized to variety of products ranging from 1 PG stiffer paving grade to roofing coating grades
- Phase angle offers clear differentiation between these binders

Data from: P. Kriz, et al, Rheological Properties of Simple Bitumen, E&E Congress, Istanbul, Turkey, 2012.

Colloidal Stability & Aging Index

- Set of samples of varying phase stability prepared in the lab (by adding oil, asphaltenes, oxidation)
- Are ΔTc , phase angle & aging susceptibility related to colloidal stability?

The Proposal

- asphalt institute
- Short term: Allow good asphalts in the specification
 - For asphalts tested above G">5000 kPa, review phase angle
 - If phase angle is sufficiently high (e.g. above XX degrees) allow them to pass
 - TF needs help to collect data field performance & phase angle at intermediate temp. → volunteers?
- Long term: develop a new fatigue parameter to limit fast aging materials and poor phase stable materials (e.g. NCHRP, D. Christensen)
 - There were reasons for aging index & ductility in the specification – Superpave already measures these properties

Appendix

Science Behind DSR-PAV, cont'd

Test Setup - Conclusion

- asphalt institute
- Very large variability for modulus measurement
- Data from 3 labs had to be excluded from analysis
- Variability increases with increasing stiffness
- 25mm PP at 0.1% showed lower variability for individual labs however larger dispersion among labs

COV for Phase Angle about 10x lower institute

Chart of COV |G*|sin delta, %, COV Delta, %

Phase Angle Measurement is Less Variable

Over a narrow range of temperature, G' & G" change relatively proportionally, thus a change in phase angle would be much less significant than a change in $|G^*|$

Limit Increase

- asphalt institute
- 5000 kPa limit suggested on very limited data developed from tests on asphalts used in the Zaca-Wigmore Test Road¹

¹Anderson, D.A. and T.W. Kennedy, "Development of SHRP Binder Specification", J AAPT, Vol. 62, 1993, pp. 481-507.

²A.A. Tayebali et al., "Fatigue Response of Asphalt-Aggregate Mixes", SHRP-A-404, National Research Council, Washington, DC, 1994.